推荐活动

Science:研究者开发出使瘫痪大鼠重新行走的复健方法

首页 » 研究 1970-01-01 转化医学网 赞(2)
分享: 
导读
<div id="region-column1and2-layout2"> <div> </div> </div> <div id="region-column1and2-layout2"> <p align="center"><img src=&quo...
<div id="region-column1and2-layout2">
<div> </div>
</div>
<div id="region-column1and2-layout2">
<p align="center"><img src="http://www.bioon.com/biology/UploadFiles/201206/2012060110335874.jpg" alt="" width="400" height="266" border="0" /></p>
<p align="center"><span style="font-family: 楷体_GB2312; font-size: x-small;">经过几个星期结合机器线束和电气化学刺激的神经修复,之前瘫痪的老鼠不仅自愿开始有一行走的步态,他们很快就在冲刺,爬楼梯以及避开障碍物。</span></p>
近日,国际著名杂志<em>Science</em>在线刊登的一项研究报告中,科学家们指出,他们开发出了一种能够让脊髓被切断的瘫痪大鼠重新行走的复健方法。这些发现提升了一种类似的方法可能会在将来对患有脊髓严重损伤病人有效的可能性。

<!--more-->

切断脊髓的神经元损伤一般被认为由于过于严重而无法修复,即使神经系统在某损伤的周围有着不寻常的建立新的连接的能力。在挑战这种观点的研究中,Rubia van den Brand及其在瑞士的同事研究了患有脊髓损伤的大鼠,其脊髓损伤类似于那些引起人类下身瘫痪的损伤。研究人员通过同时使用电刺激及注射可激活神经元的化学物质来刺激休眠状态的神经元。这一步骤重新激活了控制大鼠后肢的神经元,并让它们做好了形成新的连接的准备。研究人员接着给这些大鼠装备了与一个自动化系统相连并可支撑它们的特别马甲,托起了它们的后腿并让它们能够向前移动。

随着时间的推移,有一组大鼠为了得到某种美味食品而学习走过坚实的地面。为了得到它们的奖励,这些动物甚至会设法疾速登上台阶或跨越某个低的障碍。这些大鼠会自发性地移动,并用它们的后腿来支撑其全部的体重。相比之下,其它的大鼠是在跑步机上进行训练的。这些大鼠也会随着跑步机在其脚下的移动而自动地移动它们的腿。但是,这些跑步机训练的大鼠缺乏第一组大鼠会做出的主动决策,它们不会设法在坚实的地面上自发地走动。因此这一成功的复健步骤似乎广泛地重塑了从脊髓一直到脑子的神经回路。 
<div id="ztload">
<div>
<div>

<img src="http://www.bioon.com/biology/UploadFiles/201206/2012060110354868.jpg" alt="" width="113" height="149" border="0" />

<a title="" href="http://dx.doi.org/doi:10.1126/science.1217416" target="_blank">doi:10.1126/science.1217416</a>
PMC:
PMID:

</div>
<div>

<br/><strong>Restoring Voluntary Control of Locomotion after Paralyzing Spinal Cord Injury</strong><br/>


Rubia van den Brand1,2,*, Janine Heutschi1,2,*, Quentin Barraud1,2, Jack DiGiovanna3,4, Kay Bartholdi1,2, Michèle Huerlimann1, Lucia Friedli1,2, Isabel Vollenweider1,2, Eduardo Martin Moraud3,4, Simone Duis1,2, Nadia Dominici1,2, Silvestro Micera3,4, Pavel Musienko1,2, Grégoire Courtine1,2,†

Half of human spinal cord injuries lead to chronic paralysis. Here, we introduce an electrochemical neuroprosthesis and a robotic postural interface designed to encourage supraspinally mediated movements in rats with paralyzing lesions. Despite the interruption of direct supraspinal pathways, the cortex regained the capacity to transform contextual information into task-specific commands to execute refined locomotion. This recovery relied on the extensive remodeling of cortical projections, including the formation of brainstem and intraspinal relays that restored qualitative control over electrochemically enabled lumbosacral circuitries. Automated treadmill-restricted training, which did not engage cortical neurons, failed to promote translesional plasticity and recovery. By encouraging active participation under functional states, our training paradigm triggered a cortex-dependent recovery that may improve function after similar injuries in humans.

</div>
</div>
</div>
<br/>来源:EurekAlert!

</div>
评论:
评 论
共有 0 条评论

    还没有人评论,赶快抢个沙发

相关阅读