Nat Methods:澳大利亚科学家发明“拼写检查”基因序列新方法
导读 | 澳大利亚昆士兰大学的科学家发明一种快速,可靠,简便的纠错方法,可如同计算机检查文字拼写错误那样,发现基因测序过程中产生的扩增序列DNA代码错误。这项成果发表在今年5月出版的《自然》旗下子刊《自然方法学》<em>Nature Methods</em>上。
<!--more-->
新方法编制的软件称为“刺槐(Acacia)”,特别适用于分析微生物基因的重... |
澳大利亚昆士兰大学的科学家发明一种快速,可靠,简便的纠错方法,可如同计算机检查文字拼写错误那样,发现基因测序过程中产生的扩增序列DNA代码错误。这项成果发表在今年5月出版的《自然》旗下子刊《自然方法学》<em>Nature Methods</em>上。
<!--more-->
新方法编制的软件称为“刺槐(Acacia)”,特别适用于分析微生物基因的重要片段——扩增子。基因测序仪阅读DNA碱基代码的四个字母表:As,Cs,Ts和Gs,并拼写出不同生物体的基因后,“刺槐”软件分析输出结果。“刺槐”通过使用似然性的统计理论分析DNA的特定碱基序列,而这些碱基常常在基因测序中被错误地添加或删除。该方法集成了计算机科学,统计学和生物学,属生物信息学范畴。
当前,冗长的A,C,G,T代码引起的机器错误常常导致生物学家们误解基因的种类,误解诸如来自污水处理厂、海洋、甚至我们的肠道样本中可能存在的微生物种类。为此,科学家们主要使用双误差校正软件进行校正。同这些工具相比,“刺槐”不仅具有明显的优势,而且便于使用。
<div id="ztload">
<div>
<div>
<img src="http://www.bioon.com/biology/UploadFiles/201206/2012061512275180.jpg" alt="" width="113" height="149" border="0" />
<a title="" href="http://dx.doi.org/doi:10.1038/nmeth.1990" target="_blank">doi:10.1038/nmeth.1990</a>
PMC:
PMID:
</div>
<div>
<br/><strong>Fast, accurate error-correction of amplicon pyrosequences using Acacia</strong><br/>
Lauren Bragg, Glenn Stone, Michael Imelfort, Philip Hugenholtz & Gene W Tyson
Microbial diversity metrics based on high-throughput amplicon sequencing are compromised by read errors. Roche 454 GS FLX Titanium pyrosequencing is currently the most widely used technology for amplicon-based microbial community studies, despite high homopolymer-associated insertion-deletion error rates1, 2. Currently, there are two software packages, AmpliconNoise3 and Denoiser4, that are commonly used to correct amplicon pyrosequencing errors. AmpliconNoise applies an approximate likelihood using empirically derived error distributions to remove pyrosequencing noise from reads. AmpliconNoise is highly effective at noise removal but is computationally intensive3. Denoiser is a faster algorithm that uses frequency-based heuristics rather than statistical modeling to cluster reads. Neither tool modifies individual reads; instead both select an 'error-free' read to represent reads in a given cluster.
来自:生物谷
</div>
</div>
</div>
<!--more-->
新方法编制的软件称为“刺槐(Acacia)”,特别适用于分析微生物基因的重要片段——扩增子。基因测序仪阅读DNA碱基代码的四个字母表:As,Cs,Ts和Gs,并拼写出不同生物体的基因后,“刺槐”软件分析输出结果。“刺槐”通过使用似然性的统计理论分析DNA的特定碱基序列,而这些碱基常常在基因测序中被错误地添加或删除。该方法集成了计算机科学,统计学和生物学,属生物信息学范畴。
当前,冗长的A,C,G,T代码引起的机器错误常常导致生物学家们误解基因的种类,误解诸如来自污水处理厂、海洋、甚至我们的肠道样本中可能存在的微生物种类。为此,科学家们主要使用双误差校正软件进行校正。同这些工具相比,“刺槐”不仅具有明显的优势,而且便于使用。
<div id="ztload">
<div>
<div>
<img src="http://www.bioon.com/biology/UploadFiles/201206/2012061512275180.jpg" alt="" width="113" height="149" border="0" />
<a title="" href="http://dx.doi.org/doi:10.1038/nmeth.1990" target="_blank">doi:10.1038/nmeth.1990</a>
PMC:
PMID:
</div>
<div>
<br/><strong>Fast, accurate error-correction of amplicon pyrosequences using Acacia</strong><br/>
Lauren Bragg, Glenn Stone, Michael Imelfort, Philip Hugenholtz & Gene W Tyson
Microbial diversity metrics based on high-throughput amplicon sequencing are compromised by read errors. Roche 454 GS FLX Titanium pyrosequencing is currently the most widely used technology for amplicon-based microbial community studies, despite high homopolymer-associated insertion-deletion error rates1, 2. Currently, there are two software packages, AmpliconNoise3 and Denoiser4, that are commonly used to correct amplicon pyrosequencing errors. AmpliconNoise applies an approximate likelihood using empirically derived error distributions to remove pyrosequencing noise from reads. AmpliconNoise is highly effective at noise removal but is computationally intensive3. Denoiser is a faster algorithm that uses frequency-based heuristics rather than statistical modeling to cluster reads. Neither tool modifies individual reads; instead both select an 'error-free' read to represent reads in a given cluster.
来自:生物谷
</div>
</div>
</div>
还没有人评论,赶快抢个沙发