推荐活动

Nucleic Acids Res:GluRS的人工进化

首页 » 1970-01-01 转化医学网 赞(2)
分享: 
导读
近期,耶鲁大学分子生物物理学与生物化学系(Department of Molecular Biophysics and Biochemistry)的Dieter Söll课题组成功地通过人工进化的方法,将细菌来源的谷氨酰tRNA合成酶(glutamyl-tRNA synthetase, GluRS)转变为谷氨酰胺酰tRNA合成酶(glutaminyl-tRNA synthetase, GlnRS)...
近期,耶鲁大学分子生物物理学与生物化学系(Department of Molecular Biophysics and Biochemistry)的Dieter Söll课题组成功地通过人工进化的方法,将细菌来源的谷氨酰tRNA合成酶(glutamyl-tRNA synthetase, GluRS)转变为谷氨酰胺酰tRNA合成酶(glutaminyl-tRNA synthetase, GlnRS),证明了这两个合成酶在进化上具有很近的亲缘关系。

郭立涛(Li-Tao Guo)博士是这个课题的主要参与人,他扩展了随机突变技术的应用,增加了人们对蛋白质进化的认识,丰富了研究方法,更增进了对酶的催化机理的了解。该研究成果发表在最新一期的《核酸研究》(<em>Nucleic Acids Research</em>)网络版上。

氨基酸的进化伴随着一类叫做氨酰tRNA合成酶(aminoacyl-tRNA synthetase,aaRS)的蛋白的进化,由进化初期的几种氨基酸到现在的22种,构成了当今物种的多样性。22种氨基酸对应着21种aaRS,人类在发现这类蛋白的开始,就对其进化关系有着浓厚的兴趣, GluRS和GlnRS就是aaRS中的一种。
<p align="center"><img src="http://www.bioon.com/biology/UploadFiles/201206/2012061210205161.jpg" alt="" width="500" height="276" border="0" /></p>
<p align="center">
GluRS和GlnRS的结构对比 (图片<br/>来源:<em>Nuc. Acids Res.</em>由郭立涛博士提供)</p>
<p align="center"><!--more--></p>
在自然界中,GluRS和GlnRS在序列上和结构上高度相似,具有很近的亲缘关系,因此认为GlnRS是从GluRS进化而来。长期以来,科学家们一直对这两种酶的进化关系十分感兴趣,尝试着通过定点突变的方法互换它们之间的识别特异性,但结果并不令人满意。大肠杆菌GlnRS活性中心的22个氨基酸曾经被定点突变,也只获得了十分微弱的GluRS活性,大约是真正GluRS的千分之一,可见GluRS和GlnRS对各自底物的识别是极其精确而复杂的。这个问题变得越来越困难:GluRS和GlnRS是如何实现对底物的精确识别呢?

Dieter Söll课题组长期从事tRNA及aaRS的研究,这一问题也吸引了他们的兴趣。这个课题的主要参与人--郭立涛博士,从SIBS毕业后,在耶鲁大学一直从事蛋白质工程研究工作。郭立涛博士把人工进化的方法应用到GluRS和GlnRS进化关系的研究上,经过不懈努力,成功地将细菌来源的GluRS进化出具有GlnRS活性的突变体,此突变体酶只有7个氨基酸被突变掉,但体内试验中中证明,这个突变体可以支持GlnRS温度敏感型大肠杆菌菌株在42度下生长(42度下,此菌株中的GlnRS是没有活性的,细胞不能生长),真正成为了具有GlnRS功能的蛋白质。

<a href="http://dx.doi.org/10.1093/nar/gks507">doi: 10.1093/nar/gks507</a>
PMC:
PMID:
<div>
<div>
<div>

<br/><strong>Rational design and directed evolution of a bacterial-type glutaminyl-tRNA synthetase precursor
</strong><br/>


Li-Tao Guo, Sunna Helgadóttir, Dieter Söll,and Jiqiang Ling

Protein biosynthesis requires aminoacyl-transfer RNA (tRNA) synthetases to provide aminoacyl-tRNA substrates for the ribosome. Most bacteria and all archaea lack a glutaminyl-tRNA synthetase (GlnRS); instead, Gln-tRNAGln is produced via an indirect pathway: a glutamyl-tRNA synthetase (GluRS) first attaches glutamate (Glu) to tRNAGln, and an amidotransferase converts Glu-tRNAGln to Gln-tRNAGln. The human pathogen Helicobacter pylori encodes two GluRS enzymes, with GluRS2 specifically aminoacylating Glu onto tRNAGln. It was proposed that GluRS2 is evolving into a bacterial-type GlnRS. Herein, we have combined rational design and directed evolution approaches to test this hypothesis. We show that, in contrast to wild-type (WT) GlnRS2, an engineered enzyme variant (M110) with seven amino acid changes is able to rescue growth of the temperature-sensitive Escherichia coli glnS strain UT172 at its non-permissive temperature. In vitro kinetic analyses reveal that WT GluRS2 selectively acylates Glu over Gln, whereas M110 acylates Gln 4-fold more efficiently than Glu. In addition, M110 hydrolyzes adenosine triphosphate 2.5-fold faster in the presence of Glu than Gln, suggesting that an editing activity has evolved in this variant to discriminate against Glu. These data imply that GluRS2 is a few steps away from evolving into a GlnRS and provides a paradigm for studying aminoacyl-tRNA synthetase evolution using directed engineering approaches.

<br/>来源:生物谷

</div>
</div>
</div>
评论:
评 论
共有 0 条评论

    还没有人评论,赶快抢个沙发

相关阅读