推荐活动

Stem Cells:星形胶质细胞控制神经干细胞产生的新神经元

首页 » 1970-01-01 转化医学网 赞(2)
分享: 
导读
<p align="center"><img src="http://www.bioon.com/biology/UploadFiles/201208/2012082807304381.jpg" alt="" width="836" height="515" border=&quo...
<p align="center"><img src="http://www.bioon.com/biology/UploadFiles/201208/2012082807304381.jpg" alt="" width="836" height="515" border="0" />
神经干细胞分化图。</p>
瑞典哥德堡大学萨尔格学院(Sahlgrenska Academy)研究员Milos Pekny教授领导的一个研究小组在<em>Stem Cells</em>期刊上发表了一篇关于控制大脑中新神经元产生的分子机制方面的研究论文。

星形胶质细胞是在中枢神经系统发挥着很多功能的细胞,这些功能包括控制神经元突触和血液流动,或者大脑对神经外伤或中风的反应。

<!--more-->

<br/><strong>减少大脑组织损伤</strong><br/>


Pekny教授实验室与合作人员开展研究,并在早期证实星形胶质细胞降低中风发作后大脑组织遭受的损伤,和通过调节星形胶质细胞的活性能够极大地改善移植的神经干细胞的整合。

<br/><strong>产生新的神经元</strong><br/>


在当前这项研究中,研究人员证实星形胶质细胞如何控制大脑中新神经元的产生。

Pekny教授说,“在大脑中,星形胶质细胞控制着神经干细胞形成新的神经元的数量和成功整合到现存的神经元网络的神经元数量。为完成这种控制,星形胶质细胞分泌特异性的分子以及通过人们很少了解的与干细胞之间发生直接的细胞间相互作用。”

<br/><strong>重要的调剂物</strong><br/>


Pekny教授说,“星形胶质细胞与神经干细胞之间发生物理接触,并且我们证实它们通过Notch通路给干细胞发生信号从而保持较低的新神经元产生率。我们还证实星形胶质细胞中间纤维系统是这种过程的一种重要的调节物。它似乎表明星形胶质细胞中间纤维能够被用来一种靶标来增加新神经元的产生率。”

<br/><strong>用于未来疗法的靶标</strong><br/>


Pekny教授说,“我们正开始理解控制神经元发生背后的一些细胞机制和分子机制。神经发生是大脑可塑性组分之一,其中大脑可塑性在学习过程和大脑损伤或中风发作之后的恢复中发挥着作用。这项研究有助于我们理解人们在未来如何能够在治疗上促进可塑性和再生反应。”

本文编译自<a href="http://www.sciencedaily.com/releases/2012/08/120824082428.htm" target="_blank">Astrocytes Control the Generation of New Neurons from Neural Stem Cells</a>
<div id="ztload">
<div>
<div>

<img src="http://www.bioon.com/biology/UploadFiles/201208/2012082509352580.gif" alt="" width="113" height="149" border="0" />

<a title="" href="http://dx.doi.org/10.1002/stem.1196" target="_blank">doi: 10.1002/stem.1196</a>
PMC:
PMID:

</div>
<div>

<br/><strong>Astrocytes Negatively Regulate Neurogenesis through the Jagged1-Mediated Notch Pathway</strong><br/>


Richard Virgen-Slanea, Janet M. Rozovicsa, Kerry D. Fitzgeralda, Tuan Ngob, Wayne Choub, Gerbrand J. van der Heden van Noortc, Dmitri V. Filippovc, Paul D. Gershonb, and Bert L. Semler

Astrocytes participate actively in brain development, regulation of the mature CNS, and brain plasticity. They are important regulators of the local environment in adult neurogenic niches through the secretion of diffusible morphogenic factors, such as Wnts. Astrocytes control the neurogenic niche also through membrane-associated factors, however the identity of these factors and the mechanisms involved are largely unknown. In this study, we sought to determine the mechanisms underlying our earlier finding of increased neuronal differentiation of neural progenitor cells when co-cultured with astrocytes lacking glial fibrillary acidic protein and vimentin (GFAP−/−Vim−/−). We used primary astrocyte and neurosphere co-cultures to demonstrate that astrocytes inhibit neuronal differentiation through a cell-cell contact. GFAP−/−Vim−/− astrocytes showed reduced endocytosis of Notch ligand Jagged1, reduced Notch signaling and increased neuronal differentiation of neurosphere cultures. This effect of GFAP−/−Vim−/− astrocytes was abrogated in the presence of immobilized Jagged1 in a manner dependent on the activity of gamma-secretase. Lastly, we used GFAP−/−Vim−/− mice to show that in the absence of GFAP and vimentin, hippocampal neurogenesis under basal conditions as well as after injury is increased. We conclude that astrocytes negatively regulate neurogenesis through the Notch pathway, and endocytosis of Notch ligand Jagged1 in astrocytes and Notch signaling from astrocytes to neural stem/progenitor cells depends on the intermediate filament proteins GFAP and vimentin.

<br/>来源:生物谷

</div>
</div>
</div>
评论:
评 论
共有 0 条评论

    还没有人评论,赶快抢个沙发

相关阅读