《自然》:科学家用DNA搭多种积木形状
导读 | <p align="center"><img src="http://news.bbioo.com/uploadfile/2012/0605/201206051435087.jpg" alt="\" /></p>
<p align="center"><br/>... |
<p align="center"><img src="http://news.bbioo.com/uploadfile/2012/0605/201206051435087.jpg" alt="\" /></p>
<p align="center"><br/>来源:Wyss Institute at Harvard University</p>
美国哈佛大学研究人员以脱氧核糖核酸(DNA)单链为“积木”,搭出字母、数字、表情符号等多种形状。研究人员称,这种技术可在医学领域发挥重要作用,譬如做成药物传送器,把药物直接输送至病灶部位。
<!--more-->
<br/><strong>搭积木</strong><br/>
哈佛大学维斯研究所生物工程领域研究人员以短短的合成DNA单链为“砖”,按照预先设计,让“砖”与“砖”之间相互咬合,砌成形状各异的“墙”,就像搭乐高积木一样。
研究人员搭出了100多个形状,包括中文字“金”“木”“水”“火”“土”、数字0至9,26个英文字母、表情符号等。每个造型由数百块“单链砖”砌成,直径仅为100纳米,是一根头发丝直径的千分之一。
这项结果由最新一期《自然》杂志网络版发表。
DNA广为人知的作用是携带遗传信息,但在DNA纳米技术领域,它是一种用于制造微小的可编程结构,作用广泛。
<br/><strong>辟蹊径</strong><br/>
迄今为止,DNA纳米技术领域的研究多集中在DNA“折纸术”上。也就是说,用一根长长的DNA单链当丝线,像绣花一样反复折叠。但“丝线”怎样折,全靠订书钉般的DNA短链来决定。研究人员必须先用电脑软件设计好所有“订书钉”的DNA序列,这些“订书钉”一个紧挨一个,精确确定“丝线”走势。譬如,中国研究人员曾用一根长长的DNA单链“折”出一幅“中国地图”,直径仅150纳米。
哈佛大学研究人员另辟蹊径,把视线转移到合成的DNA短链上,避免脚手架般的长链,创出一种“替代构建法”。每个DNA单链只有一节短链,作为一块“砖”。一块“砖”如果与另一块“砖”存在互补序列,则相互咬合;如果没有互补序列,则不相连,有点儿类似积木。
借助这种方式,多块“砖”经一系列相互咬合,可以砌成预先设计的特殊形状。
<br/><strong>前景好</strong><br/>
美国每日科学网站援引研究人员的话报道,这项技术中,“砌墙”方法简单,“墙体”结构稳固而且用途广泛。
DNA“单链砖”作为一种基础材料,可能运用于医学领域,发挥重要作用。譬如,“单链砖”可以组合成药物传送器,在抵达病灶前保持药物结构完整。此外,“单链砖”是人工合成,可以实现高度生物相容。
维斯研究所创始董事唐纳德·因格贝尔说:“用DNA纳米技术制造可编程的纳米装置是维斯研究所的关注重点之一,我们坚信,它能产生全新的诊断和治疗方法。”(<br/>来源:新华网 黄敏)
<h1>Complex shapes self-assembled from single-stranded DNA tiles</h1>
Programmed self-assembly of strands of nucleic acid has proved highly effective for creating a wide range of structures with desired shapes1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25. A particularly successful implementation is DNA origami, in which a long scaffold strand is folded by hundreds of short auxiliary strands into a complex shape9, 14, 15, 16, 18, 19, 20, 21, 25. Modular strategies are in principle simpler and more versatile and have been used to assemble DNA2, 3, 4, 5, 8, 10, 11, 12, 13, 17, 23 or RNA7, 22 tiles into periodic3, 4, 7, 22 and algorithmic5 two-dimensional lattices, extended ribbons10, 12 and tubes4, 12, 13, three-dimensional crystals17, polyhedra11 and simple finite two-dimensional shapes7, 8. But creating finite yet complex shapes from a large number of uniquely addressable tiles remains challenging. Here we solve this problem with the simplest tile form, a ‘single-stranded tile’ (SST) that consists of a 42-base strand of DNA composed entirely of concatenated sticky ends and that binds to four local neighbours during self-assembly12. Although ribbons and tubes with controlled circumferences12 have been created using the SST approach, we extend it to assemble complex two-dimensional shapes and tubes from hundreds (in some cases more than one thousand) distinct tiles. Our main design feature is a self-assembled rectangle that serves as a molecular canvas, with each of its constituent SST strands—folded into a 3 nm-by-7 nm tile and attached to four neighbouring tiles—acting as a pixel. A desired shape, drawn on the canvas, is then produced by one-pot annealing of all those strands that correspond to pixels covered by the target shape; the remaining strands are excluded. We implement the strategy with a master strand collection that corresponds to a 310-pixel canvas, and then use appropriate strand subsets to construct 107 distinct and complex two-dimensional shapes, thereby establishing SST assembly as a simple, modular and robust framework for constructing nanostructures with prescribed shapes from short synthetic DNA strands.
<p align="center"><br/>来源:Wyss Institute at Harvard University</p>
美国哈佛大学研究人员以脱氧核糖核酸(DNA)单链为“积木”,搭出字母、数字、表情符号等多种形状。研究人员称,这种技术可在医学领域发挥重要作用,譬如做成药物传送器,把药物直接输送至病灶部位。
<!--more-->
<br/><strong>搭积木</strong><br/>
哈佛大学维斯研究所生物工程领域研究人员以短短的合成DNA单链为“砖”,按照预先设计,让“砖”与“砖”之间相互咬合,砌成形状各异的“墙”,就像搭乐高积木一样。
研究人员搭出了100多个形状,包括中文字“金”“木”“水”“火”“土”、数字0至9,26个英文字母、表情符号等。每个造型由数百块“单链砖”砌成,直径仅为100纳米,是一根头发丝直径的千分之一。
这项结果由最新一期《自然》杂志网络版发表。
DNA广为人知的作用是携带遗传信息,但在DNA纳米技术领域,它是一种用于制造微小的可编程结构,作用广泛。
<br/><strong>辟蹊径</strong><br/>
迄今为止,DNA纳米技术领域的研究多集中在DNA“折纸术”上。也就是说,用一根长长的DNA单链当丝线,像绣花一样反复折叠。但“丝线”怎样折,全靠订书钉般的DNA短链来决定。研究人员必须先用电脑软件设计好所有“订书钉”的DNA序列,这些“订书钉”一个紧挨一个,精确确定“丝线”走势。譬如,中国研究人员曾用一根长长的DNA单链“折”出一幅“中国地图”,直径仅150纳米。
哈佛大学研究人员另辟蹊径,把视线转移到合成的DNA短链上,避免脚手架般的长链,创出一种“替代构建法”。每个DNA单链只有一节短链,作为一块“砖”。一块“砖”如果与另一块“砖”存在互补序列,则相互咬合;如果没有互补序列,则不相连,有点儿类似积木。
借助这种方式,多块“砖”经一系列相互咬合,可以砌成预先设计的特殊形状。
<br/><strong>前景好</strong><br/>
美国每日科学网站援引研究人员的话报道,这项技术中,“砌墙”方法简单,“墙体”结构稳固而且用途广泛。
DNA“单链砖”作为一种基础材料,可能运用于医学领域,发挥重要作用。譬如,“单链砖”可以组合成药物传送器,在抵达病灶前保持药物结构完整。此外,“单链砖”是人工合成,可以实现高度生物相容。
维斯研究所创始董事唐纳德·因格贝尔说:“用DNA纳米技术制造可编程的纳米装置是维斯研究所的关注重点之一,我们坚信,它能产生全新的诊断和治疗方法。”(<br/>来源:新华网 黄敏)
<h1>Complex shapes self-assembled from single-stranded DNA tiles</h1>
Programmed self-assembly of strands of nucleic acid has proved highly effective for creating a wide range of structures with desired shapes1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25. A particularly successful implementation is DNA origami, in which a long scaffold strand is folded by hundreds of short auxiliary strands into a complex shape9, 14, 15, 16, 18, 19, 20, 21, 25. Modular strategies are in principle simpler and more versatile and have been used to assemble DNA2, 3, 4, 5, 8, 10, 11, 12, 13, 17, 23 or RNA7, 22 tiles into periodic3, 4, 7, 22 and algorithmic5 two-dimensional lattices, extended ribbons10, 12 and tubes4, 12, 13, three-dimensional crystals17, polyhedra11 and simple finite two-dimensional shapes7, 8. But creating finite yet complex shapes from a large number of uniquely addressable tiles remains challenging. Here we solve this problem with the simplest tile form, a ‘single-stranded tile’ (SST) that consists of a 42-base strand of DNA composed entirely of concatenated sticky ends and that binds to four local neighbours during self-assembly12. Although ribbons and tubes with controlled circumferences12 have been created using the SST approach, we extend it to assemble complex two-dimensional shapes and tubes from hundreds (in some cases more than one thousand) distinct tiles. Our main design feature is a self-assembled rectangle that serves as a molecular canvas, with each of its constituent SST strands—folded into a 3 nm-by-7 nm tile and attached to four neighbouring tiles—acting as a pixel. A desired shape, drawn on the canvas, is then produced by one-pot annealing of all those strands that correspond to pixels covered by the target shape; the remaining strands are excluded. We implement the strategy with a master strand collection that corresponds to a 310-pixel canvas, and then use appropriate strand subsets to construct 107 distinct and complex two-dimensional shapes, thereby establishing SST assembly as a simple, modular and robust framework for constructing nanostructures with prescribed shapes from short synthetic DNA strands.
还没有人评论,赶快抢个沙发