推荐活动

Nature:核受体结构挑战老观点

首页 » 1970-01-01 转化医学网 赞(2)
分享: 
导读
青年发病的成年型糖尿病(MODY1)是一种罕见的糖尿病,这种疾病患者的HNF-4α蛋白发生了可遗传的突变。在肝脏和胰腺中HNF-4α负责控制基因表达,按照机体需要启动或关闭基因。现在,研究人员首次明确了HNF-4α蛋白的完整三维结构,并且在该蛋白中发现了新的结合域,文章发表在今天的Nature杂志上。这项研究不仅有助于人们进一步了解HNF-4α的作用机...

青年发病的成年型糖尿病(MODY1)是一种罕见的糖尿病,这种疾病患者的HNF-4α蛋白发生了可遗传的突变。在肝脏和胰腺中HNF-4α负责控制基因表达,按照机体需要启动或关闭基因。现在,研究人员首次明确了HNF-4α蛋白的完整三维结构,并且在该蛋白中发现了新的结合域,文章发表在今天的Nature杂志上。这项研究不仅有助于人们进一步了解HNF-4α的作用机制,还为人们提供了开发MODY1治疗药物的新靶标。

“此前,HNF-4α及相关核受体的结构研究都只是针对蛋白的一部分,”文章的资深作者,Sanford-Burnham糖尿病和肥胖研究中心的Fraydoon Rastinejad教授说。“许多人认为这些蛋白不同结构域之间是松散无关联的,因此只对HNF-4α的不同片段进行研究。但我们发现事实并非如此,HNF-4α结构域之间高度有序而且相互关联,这种组织形式将帮助我们进一步理解MODY1,并推动相关治疗药物的开发。”

给MODY1的启示

Rastinejad的研究告诉人们,为何改变HNF-4α蛋白结构的可遗传突变会有如此大的破坏力。这种会引发MODY1的突变,通常出现在HNF-4α蛋白的一个特殊小区域中,该区域距离DNA结合域还很远。Rastinejad及其团队发现,尽管相距甚远,该突变还是能将信号传递到DNA结合域,导致HNF-4α发生功能故障,而引发MODY1。

研究人员还在HNF-4α蛋白中发现了可以作为药物靶标的新区域。与其他核受体类似,HNF-4α具有结合天然信号分子的区域,这些区域可以作为合成药物的靶标。不过这项研究显示,该蛋白的其他结构域也可以作为药物靶标。这是因为HNF-4α的不同结构域之间存在相互交流,研究人员认为结合在远端结构域的药物,仍然可以影响该蛋白与DNA的结合。

“我们正在与同事合作筛选大型化合物文库(约含有三十万种化合物),来寻找分子与我们新发现的区域结合,”Rastinejad说。“这种分子将有望使MODY1患者的HNF-4α恢复DNA结合能力。这样的话,即使无法修复突变,我们仍旧可以通过药物,挽救该受体与DNA紧密结合的能力。”

核受体的新认识

核受体的新认识HNF-4α属于一种特殊的蛋白类型,被称为核受体。这种蛋白在细胞中与DNA结合,根据外界信号控制着无数基因的启动和关闭。核受体是理想的药物靶标,它的一部分负责结合DNA,而另一个部分具有与信号分子结合的区域,与这些区域结合的药物,就可以控制核受体从而影响基因表达。

迄今为止,许多研究人员还认为绝大多数核受体就像一串穿线的珠子。每个珠子(蛋白结构域)都有一个功能,但穿在彼此之间的线是松散的。现在,Rastinejad及其团队指出,HNF-4α结构域之间其实是协调有序的,一个接收到信号的结构域能够将信号传输到蛋白的远端区域。Rastinejad指出,这些结构域之间存在彼此交流。

HNF-4α主要存在于肝脏和胰腺细胞,它依据器官的需要调节基因的活性。HNF-4α参与控制着碳水化合物代谢、葡萄糖调控、胰岛素合成以及许多其他的重要过程。换句话说,全靠HNF-4α肝脏和胰脏才能实现各自的功能。

原文链接:


Multidomain integration in the structure of the HNF-4α nuclear receptor complex

The hepatocyte nuclear factor 4α (HNF-4α; also known as NR2A1) is a member of the nuclear receptor (NR) family of transcription factors, which have conserved DNA-binding domains and ligand-binding domains1, 2. HNF-4α is the most abundant DNA-binding protein in the liver, where some 40% of the actively transcribed genes have a HNF-4α response element1, 3, 4. These regulated genes are largely involved in the hepatic gluconeogenic program and lipid metabolism3, 5, 6. In the pancreas HNF-4α is also a master regulator, controlling an estimated 11% of islet genes7. HNF-4α protein mutations are linked to maturity-onset diabetes of the young, type 1 (MODY1) and hyperinsulinaemic hypoglycaemia8, 9, 10, 11. Previous structural analyses of NRs, although productive in elucidating the structure of individual domains, have lagged behind in revealing the connectivity patterns of NR domains. Here we describe the 2.9 Å crystal structure of the multidomain human HNF-4α homodimer bound to its DNA response element and coactivator-derived peptides. A convergence zone connects multiple receptor domains in an asymmetric fashion, joining distinct elements from each monomer. An arginine target of PRMT1 methylation protrudes directly into this convergence zone and sustains its integrity. A serine target of protein kinase C is also responsible for maintaining domain–domain interactions. These post-translational modifications lead to changes in DNA binding by communicating through the tightly connected surfaces of the quaternary fold. We find that some MODY1 mutations, positioned on the ligand-binding domain and hinge regions of the receptor, compromise DNA binding at a distance by communicating through the interjunctional surfaces of the complex. The overall domain representation of the HNF-4α homodimer is different from that of the PPAR-γ–RXR-α heterodimer, even when both NR complexes are assembled on the same DNA element. Our findings suggest that unique quaternary folds and interdomain connections in NRs could be exploited by small-molecule allosteric modulators that affect distal functions in these polypeptides.

来源:生物通
评论:
评 论
共有 0 条评论

    还没有人评论,赶快抢个沙发

相关阅读