科学家发现羊水干细胞或具有较强的治愈潜能
导读 | 近日,来自美国莱斯大学等处的研究人员通过研究,利用来自羊水的干细胞成功促进了治愈水凝胶中血管的功能性生长,实验室研究中,研究者Jeffrey Jacot将多用的羊水干细胞同可注射的水凝胶结合起来,以后这作为支架来进行再生医学的研究,结果发现这可以明显增强机体脉管的发育,从而为血液可以带来新的组织同时也会带走废物,相关研究刊登于国际杂志the Journal of Biomedical Materials Research Part A上。 |
近日,来自美国莱斯大学等处的研究人员通过研究,利用来自羊水的干细胞成功促进了治愈水凝胶中血管的功能性生长,实验室研究中,研究者Jeffrey Jacot将多用的羊水干细胞同可注射的水凝胶结合起来,以后这作为支架来进行再生医学的研究,结果发现这可以明显增强机体脉管的发育,从而为血液可以带来新的组织同时也会带走废物,相关研究刊登于国际杂志the Journal of Biomedical Materials Research Part A上。
文章中,研究者利用来自孕妇的羊水干细胞来帮助治疗患先天性心脏缺损的新生儿,羊水干细胞具有潜力可以再生分化为许多类型的细胞,包括形成血管组织的内皮细胞等;Jacot说道,最重要的是我们找到了如何获得一种形成血管的设备,以使得实验室生长的组织完全来自羊水细胞,而且我们发现仅使用来自羊水的干细胞才可以形成新的细胞。
研究者利用聚乙二醇和纤维蛋白制造的水凝胶同羊水干细胞相结合,纤维蛋白是一种对于血凝、细胞基质相互作用、伤口愈合及血管发生非常关键的生物高聚物,其广泛用于生物支架,而且机械硬度较小,容易快速降解,将纤维蛋白和聚乙二醇结合起来可以制造出较为“坚固”的水凝胶。
实验室中研究者利用血管内皮生长因子就可以促进干细胞转化成为内皮细胞,同时纤维蛋白的存在又可以促进内皮组织从相邻组织中渗入原始的脉管系统;仅注射包含纤维蛋白的水凝胶的小鼠表现出了较薄的纤维结构的发育,如果融合入羊膜细胞/纤维蛋白水凝胶则会产生较为“强壮”的脉管系统。
在类似的试验中,研究者利用骨髓衍生的间质细胞来在水凝胶中植种,结果发现血管组织也出现了生长的迹象,后期研究者将继续研究羊水干细胞的功能,他们希望可以开发出一种生物相容性的“补丁”来帮助治疗患先天性出生缺陷的婴儿。(转化医学网360zhyx.com)
以上为转化医学网原创翻译整理,谢绝转载。如需转载,请联系 info@360zhyx.com
转化医学网推荐的原文摘要:
In situ vascularization of injectable fibrin/poly(ethylene glycol) hydrogels by human amniotic fluid-derived stem cells
Journal of Biomedical Materials Research Part A DOI: 10.1002/jbm.a.35402
Omar M. Benavides1, Abigail R. Brooks1, Sung Kyung Cho1, Jennifer Petsche Connell1, Rodrigo Ruano2 andJeffrey G. Jacot1,3,*
One of the greatest challenges in regenerative medicine is generating clinically relevant engineered tissues with functional blood vessels. Vascularization is a key hurdle faced in designing tissue constructs larger than the in vivo limit of oxygen diffusion. In this study, we utilized fibrin-based hydrogels to serve as a foundation for vascular formation, poly(ethylene glycol) (PEG) to modify fibrinogen and increase scaffold longevity, and human amniotic fluid-derived stem cells (AFSC) as a source of vascular cell types (AFSC-EC). AFSC hold great potential for use in regenerative medicine strategies, especially those involving autologous congenital applications, and we have shown previously that AFSC-seeded fibrin-PEG hydrogels have the potential to form three-dimensional vascular-like networks in vitro. We hypothesized that subcutaneously injecting these hydrogels in immunodeficient mice would both induce a fibrin-driven angiogenic host response and promote in situ AFSC-derived neovascularization. Two weeks postinjection, hydrogels were sectioned, and the following was demonstrated: the average maximum invasion distance of host murine cells into the subcutaneous fibrin/PEG scaffold was 147 ± 90 µm after 1 week and 395 ± 138 µm after 2 weeks; the average number of cell-lined lumen per square millimeter was significantly higher in hydrogels seeded with stem cells or cocultures containing stem cells (MSC, 36.5 ± 11.4; AFSC, 47.0 ± 18.9; AFSC/AFSC-EC, 32.8 ± 11.6; and MSC/HUVEC, 43.1 ± 25.1) versus endothelial cell types alone (AFSC-EC, 9.7 ± 6.1; HUVEC, 14.2 ± 8.8); and a subset of these lumen were characterized by the presence of red blood cells. Select areas of cell-seeded hydrogels contained CD31+ lumen surrounded by α-smooth muscle cell support cells, whereas control hydrogels with no cells only showed infiltration of α-smooth muscle cell–positive host cells. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2015.
还没有人评论,赶快抢个沙发