推荐活动

【深度盘点】张锋和CRISPR基因编辑系统

首页 » 研究 » 组学 2015-11-24 转化医学网 赞(3)
分享: 
导读
21世纪,随着生物技术的变革,科学家们为实现基因编辑,不断创新开发,如今已经基因编辑产生了三代新技术,分别是ZFN,TALENs和CRISPR/Cas9。

      21世纪,随着生物技术的变革,科学家们为实现基因编辑,不断创新开发,如今已经基因编辑产生了三代新技术,分别是ZFN,TALENs和CRISPR/Cas9。

      然而在基因编辑领域提到张峰,相信大家并不陌生,作为近两年大热门的CRISPR技术先锋人物之一,张锋(Feng Zhang)博士如今已日渐成为了科学界冉冉升起的一颗最闪亮的新星。本文中小编盘点了张锋博士CRISPR基因编辑相关的亮点论文。

  【1】Nature子刊:张锋博士再发CRISPR重要成果
  日前,麻省理工的张锋(Feng Zhang)博士领导研究团队向人们展示了CRISPR-Cas9的新应用。他们用这一技术在哺乳动物大脑中进行了基因功能的活体研究,文章发表在十月十九日的Nature Biotechnology上。
  张锋博士是CRISPR/Cas9技术的先驱之一。他是麻省理工学院脑与认知科学助理教授、McGovern 脑研究所和Broad研究所核心成员。去年七月,张锋荣获了美国生物医学大奖:瓦利基金青年研究家奖(Vallee Foundation Young Investigator Award),奖金25万美元。其研究组研究方向为设计新的分子工具来操控活体大脑。

  在活动物体内操纵神经元的基因组,能为哺乳动物大脑的基因功能研究提供极大的便利。酿脓链球菌的Cas9(SpCas9)能够在复制中的真核细胞中编辑一个或多个基因,通过诱导移码插入/缺失(indel)突变来去除相应的蛋白。

  【2】张锋综述:CRISPR的前景和挑战
  麻省理工学院的张锋(Feng Zhang)博士是近两年大热的CRISPR/Cas9技术的先驱开创者之一。2013年,这位80后的年轻华人科学家开发出了可用来编辑DNA、敲除指定基因的CRISPR/Cas系统,自此之后一直致力于推动这一技术走向完美。
  七月十五日,张锋博士在国际学术期刊《Human Gene Therapy》发表综述文章,介绍了CRISPR/Cas基因组编辑系统的前景以及所面临的挑战。
  他在文中介绍说,所有的科学都是从自然中得到灵感,在生物学中这一点更为真实,研究者们一些最有力的工具就来自于天然产物。从限制性内切酶和荧光蛋白,到微生物视蛋白和病毒基因传递载体,研究人员都是利用发生在各种微生物、植物和动物物种中的过程。CRISPR/Cas9基因组编辑系统的最新发展,是科学家们学习和适应自然发明的另一个例子。CRISPR/Cas9的成功,也凸显了科学的另一个一般原理:基础研究可以带来革命性的发现。
  最初,CRISPR/Cas9——细菌的防御系统,被微生物学家用以了解细菌免疫力。然而,在过去的5年里,研究人员转而将CRISPR/Cas9发展为生物学研究的有力工具。CRISPR/Cas9基因组编辑系统,已经加速了科学研究,并提高了研究人员产生遗传模型的能力。
  【3】张锋Cell:新一代CRISPR基因组编辑系统
  在发表于《细胞》(Cell)杂志上的一项研究中,哈佛-麻省理工Broad研究的张锋(Feng Zhang)及其同事们报告称发现了一种不同的CRISPR系统,其有潜力实现更简单、更精确的基因组工程操作。他们描述了这一新系统一些出乎意外的生物学特征,证实可以操控它来编辑人类细胞基因组。
  人类基因组计划的主要领导者之一、Broad研究所所长Eric Lander说:“这一系统有着巨大的潜力推动遗传工程。这篇论文不仅揭示了从前未知的一种CRISPR系统的功能,还证实了可以利用Cpf1完成人类基因组编辑,其具有一些非凡和强大的特性。这一Cpf1系统代表了新一代的基因编辑技术。”
  CRISPR序列是在1987年第一次被描述出来,在2010年和2011年它们的自然生物学功能初步被确定。2013年张锋及哈佛医学院的George Church各自第一次报道了,将CRISPR-Cas9系统应用于哺乳动物基因组编辑。

  在这篇新文章中,张锋和合作者们在不同类型的细菌中搜寻了成百上千种的CRISPR系统,寻找具有一些有用的特性,可改造用于人类细胞的酶。来自氨基酸球菌属(Acidaminococcus)和毛螺菌科(Lachnospiraceae)的Cpf1酶成为了两个有前景的候选物,张锋和同事们随后证实了其可以靶向人类细胞的基因组位点。

  【4】诺奖热门:CRISPR基因编辑系统亮点研究小盘点
  目前已发现三种不同类型的 CRISPR/Cas系统,存在于大约40%和90%已测序的细菌和古菌中。其中第二型的组成较为简单,以Cas9蛋白>以及向导RNA(gRNA)为核心的组成。由于其对DNA干扰(DNAi)的特性,目前被积极地应用于遗传工程中,作为基因体剪辑工具,与锌指核酸酶(ZFN)及类转录活化因子核酸酶(TALEN)同样利用非同源性末端接合(NHEJ)的机制,于基因体中产生去氧核糖核酸的双股断裂以利剪辑。二型CRISPR/Cas并经由遗传工程的改造应用于哺乳类细胞及斑马鱼的基因体剪辑。其设计简单以及操作容易的特性为最大的优点,未来将可应用在各种不同的模式生物当中。
  【5】张锋:如何在34岁跻身于世界顶尖生物学家?
  张锋最为突出的是他的工作效率。自2013年发表具有突破性的CRISPR论文,他已经发表了38篇论文。他的实验室一直到深夜都很热闹,张锋经常和比他更年轻的同事们一起欢快地使用移液器做实验。“他和家人吃过晚饭就会回到实验室”,他的妻子,还在学步的女儿以及他的父母挤在距离博德研究所1英里左右的一个公寓里,“因为他通常等不到第二天早上看实验结果。”张锋的博士后纳奥米?哈比卜(Naomi Habib)说道,“他以身作则,不会去计算你在实验室的时间,但他用自己的热情感染我们。”
  当哈比卜告诉张锋她要生第二个孩子时——很多实验室的老板在遇到这种情况时,不管是男性还是女性,都会言辞不善,甚至发怒——而张锋则安排了一位技术员来加快她实验的进度,并在她不在的时候继续实验。

  他将功劳归于其他科学家,即使是实验室最底层的人员。2014年,张锋和同事编辑了一种新的CRISPR相关蛋白系统,他将其命名为SAM——表面上是“协同激活介质(synergistic activation mediators)”的首字母缩写,其实是做这个工作的三个学生的名字首字母的缩写。“我们需要起一个奇特的名字取悦审稿人”,张锋说,“但其实SAM是为他们起的名字。”

  【6】看CRISPR大神如何大丰收!三周内Cell、Nature、Science各一篇
  上两周,有以下几件事让CRISPR再次成为了媒体关注的焦点:1.娱乐圈的王力宏发微博力挺张锋,“科普”CRISPR;2.张锋来清华演讲内容曝光,回应专利之争;3.张锋与人联合创办的 Editas Medicine宣布将于2017年开启CRISPR治疗失明的临床试验。
  当然,除了这些新闻事件外,CRISPR在研究领域也取得了一系列新的成果;其中,与张锋处于专利之争中的CRISPR女神Jennifer Doudna近期像“开挂了”,三周内分别在Cell、Nature和Science三大期刊上发表了最新的研究成果。
  【7】Nat Med:张锋改良CRISPR筛选技术
  律成簇的间隔短回文重复CRISPR与内切酶Cas9的组合,原本是细菌抵御病毒的重要武器,现在这一组合已经成为了一个通用工具,被用于在真核生物中进行位点特异性的基因组编辑。
  由于这种基因组编辑技术更易于操作,也具有更强的扩展性,CRISPRs-Cas9迅速成为了科研领域的新宠儿。
  此前,麻省理工Broad研究所的张锋领导研究团队,构建了一个全基因组范围内的CRISPR敲除文库(GeCKO),并在黑色素瘤模型中鉴定了对维罗非尼(Vemurafenib)产生抵抗的突变。这项研究表明,除了RNAi以外,人们也可以利用CRISPR/ Cas9系统在人和小鼠细胞中进行功能缺失性筛选。

  然而,之前用于CRISPR筛选的慢病毒递送系统病毒滴度较低,还需要一个已经表达Cas9的细胞系。这无疑限制了这一技术的应用范围。

  【8】Cell:张锋发布CRISPR重要新成果
  一直以来研究人员都无法在哺乳动物细胞中实现高通量的靶向基因编辑,CRISPR-Cas9系统的应用标志着遗传筛查一个重大的突破。
  现在,来自哈佛-麻省理工Broad研究所的研究人员将这一筛查技术应用于小鼠骨髓源性树突状细胞,研究了PAMPs触发的免疫反应的调控机制。通过综合分析基因敲除结果及蛋白质和mRNA表达改变,他们利用CRISPR筛查以前所未有的分辨率剖析了免疫调控网络。这一重要的成果发布在7月16日的Cell杂志上。
  哈佛-麻省理工Broad研究所的Aviv Regev博士和Nir Hacohen博士是这篇论文的共同资深作者。著名华人科学家、CRISPR-Cas9技术的先驱开创者张锋博士是这篇论文的合著作者。
  遗传筛查是一种可用于鉴别促成特异生物学表型或疾病环境的单个基因或基因网络的强大方法。RNA干扰(RNAi)技术是当前最有效的遗传筛查技术,但却存在着不完全基因抑制及广泛脱靶效应等问题。将CRISPR-Cas9基因编辑技术应用于各种细胞类型中进行正向遗传筛查,将从根本上提高在哺乳动物细胞中开展这类遗传筛查的能力。
  【9】Mol Cell:第二类CRISPR-Cas基因组编辑系统
  一个国际CRISPR-Cas研究人员小组发现了自然存在的、具有基因组编辑潜力的三个新系统。发现以及确定这些系统的特征有望进一步扩大基因组编辑工具箱,为生物医学研究开辟新的途径。这项研究发表在10月22日的Molecular Cell杂志上。
  美国国立卫生研究院下属国立医学图书馆(NLM)国家生物技术信息中心(NCBI)的资深研究员Eugene Koonin博士,及麻省理工学院-哈佛大学Broad研究所的张锋博士共同领导了这一研究。
  Koonin说:“这项研究显示出了发现具有不同性能新型CRISPR-Cas系统的一条途径。进化是如何获得一系列广泛的生物活性的,是这一故事最值得关注的一个方面,我们可以利用这一壮举来获得新的基因组操控工具。”

  来自CRISPR系统的酶给基因组学领域带来了革命性的发展,使得研究人员能够靶向基因组特异区域,在精确的位点编辑DNA。"CRISPR"指的是规律成簇的间隔短回文重复序列,它是细菌利用来防御入侵病毒的一种系统的关键组件。CRISPR系统生成的一种酶:Cas9可以一种高度序列特异性方式结合DNA并切割它,使得能够精确操控DNA区域。Cas9一类的酶为研究人员提供了比以往开发的方法要更快速、更廉价和更精确的一种基因编辑工具。

  【10】Nature:张锋发布CRISPR基因编辑新成果
  来自Dana-Farber/波士顿儿童医院癌症及血液疾病中心的研究人员发现,改变一小段DNA可以避开镰状细胞病(SCD)背后的遗传缺陷。这一发布在Nature杂志上的新发现,为开发出一些基因编辑方法来治疗SCD和诸如地中海贫血等其他的血红蛋白疾病开辟了一条途径。
  Dana-Farber/波士顿儿童医院的Stuart Orkin博士、Daniel Bauer博士,及哈佛-麻省理工Broad研究所的张锋(Feng Zhang)博士共同领导了这项研究。
  这一称作为增强子的DNA片段控制了分子开关BCL11A。这一开关反过来决定了红细胞是生成成人形式的血红蛋白(hemoglobin,在SCD中血红蛋白发生了突变),还是未受影响的、可以对抗镰状细胞突变效应的胎儿形式血红蛋白。其他的一些研究表明,胎儿血红蛋白升高的镰状细胞病患者病情较轻。发现这一增强子DNA序列中一些自然发生的有益变异在红细胞中下调了BCL11A,驱动了这项Nature新研究。
  【11】The Scientist:聚焦CRISPR研究先锋张锋
  作为近两年大热的CRISPR技术先锋人物之一,张锋(Feng Zhang)博士成为了科学界冉冉升起的一颗最闪亮的新星。近日,The Scientist以“Feng Zhang: The Midas of Methods”为题,向我们介绍了这位出生于80后,年仅32岁的华人科学家(延伸阅读:CRISPR研究先锋张锋博士发表最新Cell综述(免费))。
  当张锋还在爱荷华州之时,在放学之后的每周日这位年轻人都要在人类基因治疗研究所的一个实验室中度过5个小时。张锋牢记着他的导师提出的一些“疯狂的想法”,例如绿色荧光蛋白(GFP)能够吸收紫外光,因此可以作为防晒霜。而当他纯化出GFP,将它厚厚地涂在一层DNA之上时,他发现事实上GFP确实能够防止DNA损伤。
  张锋的研究项目赢得了许多科学竞赛大奖的第一名,这些奖金在后来帮助了他支付在哈佛大学的学费。尽管在分子生物学上取得了很大的成功,但张锋却选择了主修化学和物理学。张锋说:“我希望能够在变化不太迅速的一些科学领域中打下坚实的基础。物理和化学的一些法则相当固定。而每一天分子生物学都在不断地变化。”
  他的本科学位最初阻碍了他在2004年成为斯坦福大学的研究生。张锋想从事大脑研究,但由于他未接受过正规的神经科学培训,他咨询过的所有教授都拒绝了他。最终,Karl Deisseroth接受了张锋,让他到自己的实验室中去转转,他们的合作生成了神经科学领域最具变革性的一项技术。“他的技能对于光遗传学(optogenetics)的产生绝对至关重要,”Deisseroth说。(转化医学网360zhyx.com)
  以上为转化医学网原创翻译整理,转载请注明出处和链接!
转化医学网更多精彩盘点,敬请期待!

评论:
评 论
共有 0 条评论

    还没有人评论,赶快抢个沙发

相关阅读