用户登录转化医学是什么?
推荐活动

专家访谈
找到约103条结果 (用时0.1656秒)
【Cell子刊】成功开发人体肝脏类器官!合成生物学+机器学习为肝脏移植带来新希望!
原国家卫计委等部门统计数据显示,我国每年大约有150万器官衰竭患者,其中有30万患者适合器官移植方式治疗,但仅有1万多人能得到器官移植救治。因此,供体器官与受体需求的极度不平衡已经成为阻碍治疗的一大难题。 近日,匹兹堡大学医学院的研究人员结合了合成生物学技术以及机器学习算法,创造出具有血液和胆汁处理系统的人体肝脏类器官。...
【Cell子刊】有趣!压缩细胞体积可以促进肠道内类器官的生长!
由于缺乏有关细胞如何影响细胞功能的证据,细胞的物理性质的重要性仍未得到充分认识。 细胞受到不同类型的物理/机械积压刺激后会发生变化,并通过稳定LRP6信号体导致Wnt /β-catenin信号传导显著增强,通过渗透压和机械压缩来增强细胞内排列。Wnt /β-catenin传...
【Nature】科学家利用微流控系统构建具有高度生理相关性的下一代类器官
9月3日,《自然通讯》报道了日本东京医科齿科大学的科学家“通过成纤维细胞生长因子4(FGF4)和细胞外基质体外构建功能性小鼠心脏类器官”,该研究中“跳动的迷你心脏”吸引了人们的眼球,使得该消息一度“冲”上微博热搜。 现在,人们已经意识到了类器官对于医学研究的价值:从基础生物学研究到药物开发和测...
【Nature子刊】类器官新突破!利用人类干细胞可从胎儿前肠中再生多个器官
近日,一队来自辛辛那提儿童医学中心和日本的科学家报告了他们的发现,这些发现将对新一轮更复杂的类器官发育至关重要。该研究在2020年8月27日发表在《自然通讯》上,题为“Single cell transcriptomics identifies a signaling network coordinating endoderm and mesoderm diversi...
【Nature】重磅!人胰岛类器官成功控制小鼠的Ⅰ型糖尿病
从干细胞中产生胰岛素的胰腺β细胞来替代那些被免疫系统破坏的细胞,是治疗糖尿病的一种很有前途的方法。但要使细胞对葡萄糖的变化做出反应,并在细胞移植后防止免疫攻击,这具有挑战性。 近日,索尔克研究所(Salk Institute)的科学家们已经找到了解决这些问题的潜在方法。索尔克大学的研究人员利用干细胞技术,制造出了第一批能够逃避免疫系...
【Nature子刊】类器官有助于缩小实验室研究和大肠癌动物模型之间的差距
肿瘤细胞系和动物模型通常作为结直肠癌研究的重要手段。肿瘤细胞系在培养过程中会出现很多额外的突变,不能忠实地表现出肿瘤中原有特性;动物模型有很广泛的应用,但不能完全反映出人类肿瘤的发生过程;而类器官培养能保持肿瘤原有的基因型和生物学特性,可以稳定传代,操作相对简单,培养周期短。 维克森林再生医学研究所(WFIRM)的科学家们开发了人类...
【综述】2020年类器官的最新研究进展
随着类器官培养系统以及其实验开发技术的不断发展,类器官应用到了各大研究领域。到目前为止,类器官培养已用于各种组织,其中包括肠道、心脏、肝脏、胰腺、肾脏、前列腺、肺、视网膜以及大脑。类器官能更好地模拟体内环境,无疑在动物和细胞水平之间,为肿瘤研究、药物筛选、再生医学等领域提供了一个更好方案。 本文中,小编整理了2020年科学家们在类器官领域的重要研究进展,分享给大家! ...
【直播】借力类器官,打通肿瘤精准医疗最后一公里
肿瘤类器官不仅可以作为最佳的“试药替身”应用于临床诊疗,还能够取代传统肿瘤研究模型打造全新的科研平台。4月21日 19:00南方医科大学南方医院李刚教授、创芯国际生物科技(广州)有限公司陈泽新博士,为大家带来类器官在肿瘤精准治疗及前景应用方面的专题直播。干货满满,希望能对您的临床诊疗或基础科研,有所助力! 课程亮点 《类器官技术在肿瘤精准治疗中的应用》 1....
类器官——对抗肿瘤好帮手
近几年来,随着医疗技术的不断进步,人们在一定程度上改变了癌症“不治之症” 的标签。尽管取得了诸多进展,癌症依旧是全世界的一大健康难题。在癌症防治方面,除了预防和早期诊断之外,还需要更多的创新靶向疗法。然而,开发创新疗法并非易事,将创新的基础研究转化为有效治疗方法是癌症治疗过程中的一大瓶颈。 这背后的原因之一,是研究者所使用的癌症模型往往不能很好地再现肿瘤的组...
《Cell》:膀胱癌史上的重大突破!膀胱癌治疗的突破性进展—肿瘤类器官系的建立!
膀胱癌是泌尿系统最常见的恶性肿瘤,占我国泌尿生殖系肿瘤发病率的第一位。但膀胱癌的治疗是一直存在的临床难题,膀胱癌的病因复杂,既有内在的遗传因素,又有外在的环境因素。膀胱癌的治疗方案及其疗效取决于临床分期和相关的危险因素。大多数膀胱癌是泌尿道上皮癌,其中又以非肌层浸润性膀胱癌为主要类型,其不同临床结果可归因于其不同的分子特征。 ...
全球青年领袖杨璐菡再创医学奇迹!猪或成为完美人类器官捐献者!
日前,国际权威学术期刊《科学》在线刊登了一项“利用CRISPR/Cas9基因编辑技术消除猪活体逆转录病毒序列”的研究。该研究由浙江大学、哈佛大学、重庆第三军医大学以及其他科研机构合作完成,研究团队攻克了让猪成为人体器官捐献者的一个最大难关——断绝猪内源性逆转录病毒(PERVs)在器官移植接受者体内重新激活的可能性。这一历史性突破,有望使猪成为完美的人类器官捐献者。 器...
2017疾病特异性模型研究及应用--三维培养、iPSCs与类器官研讨会
会议简介: 主办单位:生物谷 时间:2016年3月3日~4日 会议规模:200人 地点:上海好望角大酒店 会议日程: 会议日程 3月3日 星期四 ...
人体“异类器官移植”时代或将来临
作为缓解脏器不足的手段,将猪等动物的细胞和组织移植到人类身上的“异种移植”备受关注。 《日本经济新闻》6月16日发表题为《猪给人类提供移植脏器的时代或将来临》的文章称,此前因受防止传染病的指导方针限制,日本事实上无法实施异种移植。不过日本厚生劳动省的研究组5月27日放宽了异种移植的指导方针。预计3到5年后,日本的国立国际医疗研究...
黄凌博士:低成本,高效率肿瘤类器官三维培养方法
从生命诞生开始,细胞家族就一代接一代的往前跑,而癌细胞就是其中不愿意沿着跑道奔跑的“调皮细胞”。随着近年来负面新闻的越来越多,恐癌情绪挥之不去,大家纷纷担心,下一个会不会就是我?这无疑促使科学家们纷纷也与癌症展开了一场赛跑,希望在更多人患上癌症之前破解体内患癌的奥秘。 然而要真实了解人体内癌细胞是如何发生发展的,就要在手术或尸体解剖过程中分离癌细胞进行分析,不幸的是,大约...
哈佛医学院:猪或可成为完美的人类器官捐献者
最近美国哈佛医学院遗传学实验室的乔治·邱奇和他的研究小组宣称,他们攻克了让猪成为人体器官捐献者的一个最大难关——断绝猪内源性逆转录病毒(PERVs)在器官移植接受者体内重新激活的可能性。这一历史性突破,有望使猪成为完美的人类器官捐献者。 在自然界,猪与人类之间的紧密亲缘关系让其具有了成为人类器官捐献者的潜力。几十年来,科学家也...
“类器官”技术能“搭建”人体组织模型
美国加州大学旧金山分校(UCSF)的研究团队开发出一种制造“类器官”(Organoid)的新技术,能把人类细胞作为生物“积木”,搭建出更精确的人体组织微模型。这些微型组织可用于筛选药物,研究组织结构特征对器官生长或癌变的影响,还有助于将来培养出完整的人体器官。 据物理学家组织网8月31日报道,“类器官”技术也被称为“DNA编程的细胞组装”(DPAC),能让研究人员设计...
PLOS ONE:由干细胞分化得到的类器官
――通过构建前列腺三维细胞模型,一组研究人员发现双酚 A(BPA)会增加器官患癌的风险 来自美国伊利诺伊大学的研究人员通过从人类胚胎干细胞 (hESCs) 中分化出前列腺的不同类型细胞,构建了一个微型前列腺类器官(Prostate Organoid)。这个类器官大约为1毫米左右,三维立体细胞培养同样也能表达成人器官中发现的相同生物标志物。 ...
《自然》实验室制造人类器官的研究热潮
最近5年,干细胞生物学领域的重要进展是类器官培养,目前已经培养出包括人类大脑在内的多种多样的类器官。类器官技术的深入研究或许能颠覆过去常规细胞生物学技术,极大地促进人类疾病治疗的研究速度。2015年7月30日《自然》专门发专题文章介绍这一重要研究领域。 2011年,维也纳分子生物技术研究所Madeline Lancaster有一段时间试图培养神经玫瑰花状结构,这是描述...
Cell:来自干细胞的类器官
组织干细胞需要独特的微环境。通过各种特殊的微环境因子组合,小鼠和人体中来自胃部,小肠,结肠,胰腺导管和肝脏胆管的上皮组织能有效形成各自类器官。这种上皮类器官平台也能用于体外,研究人员可以利用它们从人体多能干细胞产生消化组织。因此这种技术在基础研究和医学转化应用方面都颇具前景。 所谓类器官(Organoid)狭义来说就是原生动物细胞质分化形成某些类似高等动物器官的结...
Nature重大成果:最全面的人类器官表观基因组图谱
多年来,科学家们成功获得了人类基因组的工作图――编码人类生命的完整DNA序列图像。而现在他们仍然在往这一图集添加新页面――散布在DNA链上,影响了基因抑制的化学标记物――甲基的图谱。 来自Salk研究所的科学家们报告称,他们构建出了来自个体捐赠者(包括女人、男人和孩子)十多种不同人类器官最全面的表观基因组图谱。尽管甲基化不会改变...