用户登录转化医学是什么?
推荐活动
专家访谈
找到约94条结果 (用时0.1656秒)
【Nature子刊】天津大学李晓红团队:构建类器官-脑-计算机接口,引领脑损伤修复新时代!
2024年11月6日, 天津大学临床医学院李晓红团队在期刊《Nature Communications》上发表了题为“Constructing organoid-brain-computer interfaces for neurofunctional repair after brain injury”的研究论文。团队评估了OBCI的长期安全性和可行性,并探索神经调节策略。OBCI刺激促进...
新型生物标志物!南方医科大学发文:揭示血脑屏障修复治疗靶向新策略
8月7日,南方医科大学研究团队在期刊《Cell Death&Disease》上发表了研究论文,题为“Hepcidin depending on astrocytic NEO1 ameliorates blood-brain barrier dysfunction after subarachnoid hemorrhage”,本研究阐明了星形胶质细胞Neogenin-1 (NEO1)在SAH后...
苏佳灿团队最新Bioact. Mater.成果:初代软骨类器官促软骨修复研究
骨关节炎(OA)作为一种全球普遍的软骨退行性疾病,对个人和社会都带来了巨大负担。现有治疗手段难以有效实现关节软骨修复。近期研究焦点转向了体外培养的软骨类器官,它不仅能够模拟天然软骨的功能,还能促进宿主组织的修复,为软骨组织工程和再生医学领域提供了创新策略。尽管如此,目前普遍采用的类器官培养基质,如Matrigel,因其来源动物、批次间差异以及成分不透明性等问题而受限。鉴于此,开发具有高度可控...
苏佳灿教授团队2023年论文合集:骨关节炎新机制与软骨靶向修复新策略
1.维持软骨下骨缺氧环境延缓骨关节炎进展 (ESI高被引) Zhang H, Wang L, Cui J, Wang S, Han Y, Shao H, Wang C, Hu Y, Li X, Zhou Q, Guo J, Zhuang X, Sheng S, Zhang T, Zhou D, Chen J, Wang F, Gao Q, Jing Y, Chen...
苏佳灿教授团队2023年论文合集:骨质疏松新机制与骨靶向修复新策略
1.骨靶向LNP递送m7G-Runx2-mRNA改善老年性骨质疏松症 Liu J, Zhang Y, Wu Y, Li G, Ji N, Han R, Tang H, Liu H, Wang C, Cui J, Song P, Jing J, Chen X, Su J. Delivery of m7G methylated Runx2 mRNA by bone-ta...
神药“阿司匹林”为何能防癌?蒋晖等人揭示阿司匹林促进DNA修复新机制
近日,蒋晖等人在《Cell Research》期刊发表了研究论文,研究表明,阿司匹林除了其广为人知的抗炎作用外,还具有良好的对抗辐射的作用,通过对组蛋白H4K16的乙酰化,增强了染色质解压缩,从而增强DNA损伤部位招募修复因子进行同源重组修复。 https://www.nature.com/articles/s41422-023-00783-6 相关研究...
【Nature】重磅!哈佛团队发现神经元中的DNA修复新机制,能够推动神经退行性疾病等研究进展!
近日,哈佛医学院的研究人员在Nature上发表了题为“A NPAS4–NuA4 complex couples synaptic activity to DNA repair”的研究。该研究发现了一种发生在神经元中的新的DNA修复机制,解释了为什么神经元在高强度重复工作的情况下仍能持续工作。 具体来说,研究结果表明,一种名为NPAS4-NuA4的蛋白质复合物启动了修复神经元活动诱导的DNA断...
【Cell Reports】找到了引起侵袭性肝癌的罪魁祸首!竟是源于这种帮助修复断裂DNA的“垃圾DNA”
近日,在Cell Reports上的一篇题为“APLF and long non-coding RNA NIHCOLE promote stable DNA synapsis in non-homologous end joining”的研究,揭示了这些非凡修复系统之一的工作机制。 DOI:https://doi.org/10.1016/j.celrep.2022.111917 预后最...
【Nature】首次揭示溶酶体修复的核心机制,理解衰老更近一步
9月7日,来自匹兹堡大学医学院细胞生物学系的谭小军博士与衰老研究所所长Toren Finkel博士在《自然》(Nature)杂志发表了一篇题为“A phosphoinositide signalling pathway mediates rapid lysosomal repair ” 的细胞生物学领域研究论文。研究者们通过一系列实验,首次描述了一种溶酶体修复的核心途径:PITT途...
【Science】美颜神器透明质酸——还能唤醒干细胞修复肌肉?
8月4日,发表在《Science》杂志上的一项新研究“JMJD3 activated hyaluronan synthesis drives muscle regeneration in an inflammatory environment”揭示了一种控制肌肉修复的独特细胞通讯形式。肌肉干细胞(MuSC)通过激活细胞外基质蛋白透明质酸 (HA) 的产生,克服来自损伤生态位的抑制性炎症信号、...
【Nature子刊】揭开斑马鱼心脏再生的奥秘!——提供人类心脏修复研究新可能
当人心脏病发作而得不到及时的治疗时,心肌细胞会因缺氧而受损并开始死亡,且无法再生。但低等脊椎动物斑马鱼则大不相同,其心脏在受伤后具有很高的再生能力。最近,有研究团队模拟了斑马鱼心脏的心肌梗死损伤,并通过单细胞分析和细胞谱系树,追踪了心肌细胞的再生。 斑马鱼,俗称 “花条鱼”、“蓝条鱼”,原产于喜马拉雅山南麓的印度、巴基斯坦、孟加拉和尼泊尔等南亚国家。这种热带鱼与人体基因存在高度相...
【Cell子刊】肠道是如何进行自我替换和修复的?
为了在吸收所需营养的同时充当抵御病原体的强大屏障,肠道内壁必须保持每天再生。在肠道内常驻的干细胞则负责满足这种持续修复和补充的需要,但每个干细胞的工作皆需符合肠道的整体状况和当前需求。干细胞错误的工作决策和运作不协调可能会引发肠道疾病和癌症。探索干细胞是如何协调工作的,能为肠道修复提供更深入的了解。 洛克菲勒基金会的科学家们发表了一项新的研究,他们发现干细胞能够整合周围环境的线...
【Science】一种新发现的信使物质能够促进心脏修复过程!
心脏病发作时,心肌不再提供足够的血液和氧气,部分心肌组织坏死并生成疤痕。这会导致严重的心脏功能不全和心力衰竭。与肝脏不同,成年人的心脏很难再生,但是它能够启动修复过程。由于心脏的修复过程究竟是如何发生的还不得而知,因此,目前还没有专门促进愈合的药物。 最近,由汉诺威医学院(MHH)心脏病和血管学系的Molecular and Translational Cardiology主任—...
【Cell子刊】发现脑损伤后的修复机制——神经元和神经胶质协同驱动神经再生!
中风和创伤性脑损伤最具破坏力的一点是:失去的神经元永远不能被替代。这意味着,根据损伤的部位,患者可能会遭受关键的运动或认知功能的长期损害,如语言和记忆。 但大脑确实能够产生新的神经元。它拥有一些特殊的细胞,叫做神经干细胞,这些细胞部分会在组织受损时被激活。可不幸的是,虽然许多细胞开始再生过程,但只有一小部分干细胞被完全激活。因此,新生成的神经元数量稀少,而损伤后存活下来的并能够在损伤部位重...
修复和再生心肌细胞——心脏再生新技术!
数量有限的心肌细胞! 01 心脏病是全世界死亡的主要原因,在心脏病发作时,一个成年的人类心脏可能失去多达10亿个心肌细胞,而且只有不到1%的成人心肌细胞能够再生。不过,大多数人死亡时,心肌细胞大多与出生后第一个月的心肌细胞相同。但是当心脏病发作和心肌细胞死亡时,心脏的收缩能力就会丧失。因此,心脏再生技术备受关注,而又困难重重。不过,近期发现的一项新技术,有望为该领...
【Nature子刊】控制神经干细胞的新方法——带领研究向修复脑损伤又迈进了一步
多伦多大学和Sinai Health的科学家表示他们已经发现了一种改变神经干细胞宿命的新方法,这带领研究人员更进一步地解开受伤或中风后如何进行大脑修复的谜题。 最近《Nature Communications》杂志上发表的一项研究“Signal requirement for cortical potential of transplantable human ne...
【Science】被T细胞攻击后,癌细胞靠“修复损伤”存活下来!
来自基因泰克公司、霍华德休斯医学研究所和Peter MacCallum癌症中心的一个研究小组发现,通过修复由T细胞释放的一种蛋白引起的其膜上的孔洞,癌变的肿瘤细胞能够在攻击中存活下来。在他们发表在《Science》杂志上的论文“ESCRT-mediated membrane repair protects tumor-derived cells against T cell attack”中...
【Nature】治疗就像修复建筑物一样,校正患病细胞的结构,即可恢复健康!
更多地了解驱动肥胖导致不良健康影响的机制,可以开发出对应的方法来调控这些不良影响。“慢性代谢性疾病,包括肥胖、糖尿病、心血管和肝脏疾病,是全球最大的公共健康问题,”哈佛大学陈曾熙公共卫生学院(Harvard T.H.Chan School of Public Health)遗传学和代谢学教授,James Stevens Simmons荣誉教授,Sabri Ülker营养、遗传及代谢研究中心主...
【Nature子刊】重磅!3D类器官修复受损肠道,临床应用前景广阔
3D类器官,是过去十年中生物医学领域的革命性发展之一。3D类器官是(实验室生产的)器官的缩小简化版,由细胞团构成。它们是三维的,能够显示逼真的微观解剖结构。类器官应用广泛,可以作为研究疾病的体外工具,也可用于再生医学和精准医疗。 早在2009年,Hans Clevers和Toshiro Sato用来源于小鼠肠道的成体干细胞培育出首...